Efficient Higher Order Full-Wave Numerical Analysis of 3-D Cloaking Structures

نویسندگان

  • Slobodan V. Savić
  • Ana B. Manić
  • Milan M. Ilić
  • Branislav M. Notaroš
  • S. V. Savić
چکیده

Highly efficient and versatile computational electromagnetic analysis of 3-D transformation-based metamaterial cloaking structures based on a hybridization of a higher order finite element method for discretization of the cloaking region and a higher order method of moments for numerical termination of the computational domain is proposed and demonstrated. The technique allows for an effective modeling of the continuously inhomogeneous anisotropic cloaking region, for cloaks based on both linear and nonlinear coordinate transformations, using a very small number of large curved finite elements with continuous spatial variations of permittivity and permeability tensors and high-order p-refined field approximations throughout their volumes, with a very small total number of unknowns. In analysis, there is no need for a discretization of the permittivity and permeability profiles of the cloak, namely for piecewise homogeneous (layered) approximate models, with material tensors replaced by appropriate piecewise constant approximations. Numerical results show a very significant reduction (three to five orders of magnitude for the simplest possible 6-element model and five to seven orders of magnitude for an h-refined 24-element model) in the scattering cross section of a perfectly conducting sphere with a metamaterial cloak, in a broad range of wavelengths. Given the introduced explicit approximations in modeling of the spherical geometry and continuous material tensor profiles (both by fourth-order Lagrange interpolating functions), and inherent numerical approximations involved in the finite element and moment method techniques and codes, the cloaking effects are shown to be predicted rather accurately by the full-wave numerical analysis method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFICIENT NUMERICAL DYNAMIC ANALYSIS OF TENSION LEG PLATFORMS UNDER SEA WAVE LOADS

However it is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable methods for numerical integration. The modified Euler method (MEM) is a simple nume...

متن کامل

Estimation of Sloshing Wave Height in Broad Cylindrical Oil Storage Tanks Using Numerical Methods

Cylindrical steel tanks are important components of many industrial plants such as oil refineries and chemical plants. Usually failure of cylindrical tanks leads to serious consequences. During the past earthquakes such as 1964 Alaska and 1999 Turkey seismic performance of cylindrical tanks revealed that tanks are seismically vulnerable. Therefore, evaluation of seismic performance of these str...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

Numerical Techniques for Integral Equations

Finding computationally efficient numerical techniques for simulation of three-dimensional structures has been an important research topic in almost every engineering domain. Surprisingly, the most numerically intractable problem across these various disciplines can be reduced to the problem of solving a three-dimensional potential problem with a problem-specific Greens function. Application ex...

متن کامل

Wave Evolution in Water Bodies using Turbulent MPS Simulation

Moving Particle Semi-implicit (MPS) which is a meshless and full Lagrangian method is employed to simulate nonlinear hydrodynamic behavior in a wide variety of engineering application including free surface water waves. In the present study, a numerical particle-based model is developed by the authors using MPS method to simulate different wave problems in the coastal waters. In this model flui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013